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Abstract

A new class of algorithms that preserve mass exactly for incompressible flows on a Cartesian mesh are presented.

They amount to piecewise-linear, area-preserving mappings of tessellations of the plane. They are equivalent to

Volume-of-Fluid (VOF) advection methods which are decomposed into an Eulerian implicit scheme in one direction

followed by a Lagrangian explicit step in the other one. It is demonstrated that mass conservation is exact for in-

compressible flows and that there are no undershoots or overshoots of the volume fraction which thus always remains

constrained between 0 and 1.
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1. Introduction

Transporting materials by an incompressible flow results in the conservation of volume and mass.

Perhaps surprisingly, when dealing with two-phase and free-surface flows no numerical method exists that

ensures this conservation to machine accuracy. The purpose of this paper is to introduce such a method,

which is related to the Volume-of-Fluid method (VOF) but is in fact more general. We describe our method
in two dimensions (2D), generalizations to the 3D space are briefly discussed. Consider a tessellation of a

plane in elementary squares with area A (the generalization to rectangles is straightforward). The area of

fluid in each cell at time step n is noted Cn
ijA, where Cn

ij is the fraction of the cell ði; jÞ occupied by the

reference phase. A natural definition of mass conservation is a method which conserves the total area at

each time step so that
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X
ij

Cnþ1
ij ¼

X
ij

Cn
ij: ð1Þ

The Volume-of-Fluid (VOF) method is a convenient and popular technique to model interfaces in two-

phase and free-surface flows, and seems naturally suited to realize condition (1). Cells with just one fluid

will have a value of C equal to 0 or 1, while mixed cells will have an intermediate value of C. At any time

step in the simulation the interface is not known: its shape has to be inferred from the knowledge of the
scalar field C and then properly advected in the velocity field v. This delineates a two-step procedure which

is mainly geometric in nature [1]. If we consider a 2D Cartesian geometry, the PLIC (for Piecewise Linear

Interface Calculation) technique reconstructs the interface in each computational cell with a segment

perpendicular to the gradient of the scalar function C. We stress the fact that the reconstruction is not a

unique process, since it relies on the algorithm adopted to calculate the gradient of C [1–5]. The actual

position in the cell of this inclined segment is then uniquely determined from area conservation [6], but the

reconstruction is in general not continuous across the cell boundary. The advection of the interface requires

the calculation of cell boundary fluxes. This can be done independently along each coordinate direction,
with multidimensionality obtained via an operator-split advection technique [1,2,4,5,7–9] or with multi-

dimensional schemes [1,10–12]. The use of volume of fluid data and fluxes should lead directly to exact mass

conservation but it is in fact not so. In the published methods, the advection operations results in various

inconsistencies. In several cases, the new areas Cn
ijA are simply not obtained from the old ones by adding

fluxes because of difficulties with the splitting of the incompressibility condition [5]. Moreover, interface

advection algorithms may produce some systematic errors, such as volume fractions that do not satisfy

06Cn
ij 6 1 ð2Þ

and thus are inconsistent with their definition (an example is given below in this note), or that are either

Cn
ij ¼ � or Cn

ij ¼ 1� �, where � is a small positive number, instead of being 0 or 1. This occurs randomly in

the lattice and inside the bulk of each phase and may be seen on several published figures [5,13]. These

errors introduce a non-local inconsistency by generating little holes in the bulk of the reference phase and

some level of debris outside it. These integration inaccuracies have been called ‘‘wisp’’ [11] and should not

be confused with the so-called ‘‘flotsam’’ or ‘‘jetsam’’, which are bigger in nature and mainly due to low-

order reconstruction techniques such as SLIC (for Simple Line Interface Calculation) and algebraic
methods [9,11,14]. The above-mentioned inconsistencies are difficult to correct: it is not obvious where the

excess or missing mass should be disposed of, or retrieved. Code writers then routinely redistribute it in the

surrounding cells with some diffusion algorithm or reset the volume fraction to 1 or 0 thus destroying mass

conservation. See [1,11,14] for examples on how to remove overshoots and undershoots of the volume

fraction C or to limit its values with a simple filtering C ¼ MINð1;MAXð0;CÞÞ.
From the more general point of view of the choice between various methods of interface tracking such as

VOF, markers or level sets, mass conservation, if desirable, should be achieved by at least some sort of

accounting of the volume in each cell. A few hybrid methods have appeared recently, some combining for
instance level sets and particles [15] or markers and a level contour reconstruction method [16]. Although

marker approaches may be very accurate, a natural way to obtain volume conservation is through some

kind of VOF algorithms. This has led to several mixed approaches that combine a couple of these methods,

such as VOF and level set [17], VOF and interface markers [18,19]. However, none of the proposed methods

in their most recent version conserves mass exactly. In this respect, the status of VOF advection methods

may be found in a previous paper where we describe a combined ‘‘Eulerian–Lagrangian Advection’’ [5]

(hereafter we cite this paper as ‘‘ELA’’). In ELA, we tabulated mass conservation for various VOF schemes

and found that there is only one method that satisfies both mass conservation (1) and the consistency
relation (2) without the need of any local redistribution algorithm. This technique was called the Eulerian

Implicit–Lagrangian Explicit (EI–LE) method, however there was no proof that the method satisfied both



E. Aulisa et al. / Journal of Computational Physics 192 (2003) 355–364 357
(1) and (2) in any given incompressible flow. In this note, we supply that proof, present the unsplit version

of this technique, show that is comparable to other VOF unsplit advection algorithms in terms of per-

formance, but much simpler to implement and strictly mass conserving.
2. The area-preserving linear-mapping method

Let X be a bounded domain with the reference phase 1 contained in the region X1 � X and v ¼ ðu; vÞ an
arbitrary divergence-free flow field, i.e., r � v ¼ 0. We consider a staggered MAC mesh with square cells of

size h, with the velocity horizontal and vertical components defined in the center of the cell sides, as shown

in Fig. 1. To simplify even further the notation, we take a dimensionless velocity which is actually the CFL

number, so that when we write u we mean u dt=h. With this notation, the square cell has sides of unit

length, the reference phase area and the volume fraction C have the same value and the thickness of the

rectangular area crossing the right boundary in the time dt is just u2. We have also a simplified expression

for the discrete version of r � v ¼ 0

ðu2 � u1Þ þ ðv2 � v1Þ � Dxuþ Dyv ¼ 0: ð3Þ

The geometric nature of the VOF method has been clearly pointed out in [1], relatively to the reconstruction

process and the calculation of boundary fluxes. In this note, we extend the geometrical interpretation to the
whole advection as a linear mapping. For each cell, we define the two linear mappings Pxy and Pyx

Pxy ¼
x00 ¼ aðxþ u1Þ;
y00 ¼ by þ v1;

�
Pyx ¼

x00 ¼ dxþ u1;
y00 ¼ cðy þ v1Þ;

�
ð4Þ

where, with the same notation of Eq. (3), the four constants are a ¼ 1=ð1� DxuÞ, b ¼ ð1þ DyvÞ ¼ 1=a,
c ¼ 1=ð1� DyvÞ and d ¼ ð1þ DxuÞ ¼ 1=c. The Jacobian of the two transformations, by using (3), is equal

to one: Jxy ¼ ab ¼ Jyx ¼ cd ¼ 1, thus they both are an area-preserving mapping. For example, with refer-

ence to Fig. 1, where the flow is compressed in the x-direction and expands along the y-coordinate, the first
mapping Pxy is understood by defining the two rectangles A0B0C0D0 and A00B00C00D00 related to the grid square

cell ABCD. The first rectangle A0B0C0D0 is the pre-image of the grid cell ABCD and the vertical sides A0D0 and

B0C0 are the pre-images of the vertical sides AD and BC of the unit square. The pre-image is mapped onto

the unit cell by the horizontal component of the mapping and represents the implicit part of the algorithm

for the mapping Pxy . Similarly, the vertical component of the flow maps the square cell ABCD onto
the rectangular image A00B00C00D00 and represents the explicit part of the method. In practice, we are
Fig. 1. The linear mapping Pxy defined in the text maps the rectangle A0B0C0D0 onto A00B00C00D00. The vertical and horizontal sides are

advected by the horizontal and vertical components ui, vi of the flow.
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Fig. 2. A geometrical view of the whole advection procedure for the mapping Pxy : (a) Eulerian fluxes along the x-coordinate;
(b) mapping onto the unit square (implicit part of the method). In the split version of the algorithm, the intermediate reconstruction

is shown as a dashed line; (c) Lagrangian advection in the y-direction (explicit component of the method).

358 E. Aulisa et al. / Journal of Computational Physics 192 (2003) 355–364
transforming rectangles to rectangles, with two independent 1D mappings, as x00 is a function of x only and

so y00 of y, which conserve the area when combined together.

We now restrict the application of this method to two-phase and free-surface flows and assume that the

interface has been already reconstructed as a linear function in each computational cell with a PLIC al-

gorithm based on the knowledge of the scalar function C at time step n. With reference to Figs. 1 and 2(a)

and the linear mapping Pxy , the reference phase inside the rectangle A0B0C0D0 comes from three different

horizontal cells, in particular the contribution from the left cell is the reference phase inside the rectangle
A0ADD0 of Fig. 1, shown as a gray area in Fig. 2(a). The whole procedure amounts to considering the

piecewise-linear reconstructed interface in A0B0C0D0, computing its piecewise linear image by applying the

linear mapping Pxy , and calculating the area occupied by the reference phase in A00B00C00D00 which belongs to

the central cell ABCD and to the upper and lower cells. These areas can be computed in a very simple and

efficient way with the routines described in [6]. The calculation is extended to the entire computational

domain and the volume fraction C field is updated at the next time step nþ 1.

Mass is conserved exactly because of the area-preserving property of the linear mapping. The condition

(2) is also preserved simply because the new fractions are calculated by adding areas whose sum by con-
struction is always smaller than or equal to the area of a unit square. Moreover, arbitrarily shaped re-

constructions (including spline approximations or parabolic arcs) could be mapped in this way if one can

compute the images of the approximants. Short of an exact numerical mapping, approximate mappings

would also conserve mass provided that the mass advected to A00B00C00D00 is constrained to be equal to the

mass in A0B0C0D0. We remark that no holes or overlapping regions are produced because we start with an

exact tessellation of the plane with rectangles A0B0C0D0 and end up with another tessellation with rectangles

A00B00C00D00. This method is ‘‘unsplit’’ in the terminology of VOF methods since the interface advection is

performed in a single step.
3. Connection with previous methods

The linear mapping method can be related to the split EI–LE scheme described in ELA. We notice that

each mapping P can be divided in the sum of two 1D mappings. In the case of Pxy we have the sequence

Px ¼
y 0 ¼ y;
x0 ¼ aðxþ u1Þ;

�
and Py ¼

y00 ¼ by0 þ v1;
x00 ¼ x0:

�
ð5Þ
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Transforming A0B0C0D0 into the unit square cell ABCD byPx is equivalent to the EI step, while transforming

ABCD into A00B00C00D00 is equivalent to the LE step. This can be seen by translating the algebraic expressions

of the two methods into the estimate of the areas in the rectangles. To this aim, we consider a 1D advection

equation along the x-axis for the volume fraction C

oC
ot

þ u
oC
ox

¼ 0 ! oC
ot

þ oðuCÞ
ox

¼ C
ou
ox

; ð6Þ

where the term on the r.h.s. of the second equation represents a 1D compression/expansion [1], and dis-

cretize this equation with a simple forward scheme in time, with u once again equal to the CFL number

Cnþ1
ij ¼ Cn

ij þ Fleft � Fright þ ~CCijDxu; ð7Þ

where Fleft and Fright denote the C fluxes across the left and right sides of the ði; jÞth cell. If we consider the

value Cnþ1
ij for ~CCij, we recover the implicit (EI) scheme

Cnþ1
ij ¼ Cij þ Fleft � Fright

1� Dxu
: ð8Þ

The same result is obtained by applying the mapping Px, as shown in Figs. 2(a) and (b). On the other hand,

if we substitute Cn
ij for

~CCij we get the explicit (LE) scheme depicted in Fig. 3

Cnþ1
ij ¼ Cn

ijð1þ DxuÞ þ Fleft � Fright: ð9Þ

Both the LE and EI schemes obey the consistency condition (2).

The 2D split advection scheme by Li [2,20] consists of two LE steps, one along each coordinate direction.

It does not conserve mass, but obeys the consistency condition. Rider and Kothe [1] developed a 2D split

scheme based on an algebraic discretization of the advection equation as in (7), where an explicit step is
followed by an implicit advection in the other direction. Puckett et al. [10] proposed the same scheme but

with the explicit and implicit components in reversed order. A geometrical interpretation of the difference

between the LE step and the explicit advection of [1,10] is shown in Fig. 3. Both schemes stretch the in-

terface in the same way, but fluxes are calculated differently [5]: in the LE method the interface is first

advected and then the fluxes are calculated, the opposite is true for the other method. With a simple ex-

ample, we show that this can result in a volume fraction that does not satisfy the consistency condition (2).

Consider a situation similar to Fig. 3, but with u1 ¼ 2u2 ¼ 2u > 0, the left cell with C ¼ 1 and the central

cell with the end points of the interface segment located at ð1� u; 1Þ and ð1; 0:5Þ, then Cn
ij ¼ 1� u=4. In

both cases the volume fraction after time integration is given by (9) but with the Eulerian fluxes Fleft ¼ 2u,
Fright ¼ 3u=4 we find Cnþ1

ij ¼ 1þ u2=4 > 1, while with the Lagrangian fluxes Cnþ1
ij ¼ 1 by construction.

Similarly, it is possible to find a case in which Cnþ1
ij < 0. The EI step is identical to the implicit part of the

algorithm described in [1,10]. To our knowledge, there has been no published attempt to use an EI–EI

method which would also preserve consistency but not mass. Finally, we notice that if the linear mapping
uu 21

(a) (b)

Fig. 3. Boundary fluxes along the x-direction for the 1D advection: (a) horizontal velocity and initial reconstruction; (b) Eulerian

(dotted areas) and Lagrangian fluxes (grey areas).
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scheme is run in its split version, after the first mapping Px another interface reconstruction is needed in the

whole domain, shown as a dashed line in Figs. 2(b) and (c), before applying the second mapping Py . As a

result, the flux calculation with the split algorithm is somewhat simpler, but a second reconstruction per

time step is required.

The extension to the 3D space of this method is not direct. In [21], we suggest the following procedure to

circumvent this difficulty. We consider the three 2D velocity fields v1 ¼ ðu1; v1; 0Þ, v2 ¼ ð0; v2;w2Þ and

v3 ¼ ðu3; 0;w3Þ and require each 2D field to be incompressible, r � vi ¼ 0, and their sum to be the 3D field v,P
i v

i ¼ v. Therefore, we have six linear scalar equations for each grid cell and if Ntot is the total number of
computational cells then the inverse of a ð6NtotÞ � ð6NtotÞ sparse matrix is needed. For fixed grids the inverse

matrix is not sparse, but it is the same at each time step and it can be economically stored for small-medium

size problems. Otherwise, it has to be inverted at each time step, requiring a consistent computational effort.

This may somewhat slow down the algorithm, but the cost of this inversion is smaller than that required to

invert for the pressure in a multiphase flow application.
4. Advection accuracy tests

In this section, we consider two advection problems which are widely used to test the accuracy of re-

construction and advection algorithms: the Zalesak slotted disk rotation [22] and the reversed single vortex

test [1,23]. We consider only a limited number of tests and show that the linear mapping method is

comparable to other advection algorithms in terms of performance, while its major strengths are the

simplicity and the mass conservation property. Three reconstruction techniques are mentioned in the tests.

The ELVIRA and Puckett�s algorithms [4] are both PLIC methods that approximate linearly the interface

by minimizing a discrete error function between the actual volume fraction values in a 3� 3 block of cells
around the cell ði; jÞ and those obtained with a linear reconstruction. The first method considers only six

possible values of the angular coefficient of the straight line, the second one minimizes the same error

function with an iterative search of the optimal angular coefficient. They both reconstruct a linear interface

exactly, but the second approach is slightly more performing when the local interface curvature is high [11].

The third technique (SZ) approximates the interface in each cell with two consecutive segments, it relies on

an initial PLIC reconstruction and is based on a least square fit [5]. We compare our advection method with

three other unsplit schemes: the defined donating region (DDR) [12] and Stream [11] by Harvey and

Fletcher and one (RK) by Rider and Kothe [1]. The donating region of each of these schemes is concep-
tually depicted in Fig. 4. The DDR scheme deforms the rectangular fluxing area through the right boundary

to a trapezoid, to avoid an overlap with the flux through the top side, but it conserves the area. The RK

scheme removes and adds triangles near the cell corners along the characteristic lines, in particular the

dashed height of the top triangle removed in Fig. 4(c) is equal to v2. Finally, the Stream scheme divides the

cell side in nst equal segments that represent the exit of elementary flux tubes which are reconstructed

backwards along the characteristic lines. The sum of these areas defines the donating region.

4.1. Zalesak slotted disk rotation

In this test, the unit square is divided in 1002 cells and a circle with radius equal to 15 cells is centered at

ð0:5; 0:75Þ. A vertical rectangular cut is produced with a width equal to one-third of the radius and the

upper bridge has the same maximum thickness. A full rotation with constant angular velocity is performed
in 628 steps. This advection study tests mainly the accuracy of the reconstruction algorithm near regions of

high curvature, since both terms in Eq. (3) are zero, thus there is no 1D compression/expansion. As a matter

of fact, we notice in Fig. 5 that the two lines corresponding to the ELVIRA reconstruction algorithm,

combined with the split and unsplit versions of the linear mapping method, cannot be distinguished at this
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Fig. 4. Different donating regions through the right boundary: (a) 1D split, (b) DDR, (c) KR, (d) Stream schemes.
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resolution. On the other hand, with the SZ reconstruction algorithm and the split EI–LE advection we

obtain definitively a more precise and symmetric result. For comparison with published data we consider

the Rudman–Zalesak problem [9] where the square has side 4 and is divided in 2002 cells. The circle center is

at ð2; 2:75Þ, the widths of the slot and of the upper bridge are 6 and 20 cells, respectively. A full rotation is
performed in 2524 steps and the non-dimensional error E is defined as

E ¼
P

ij jCij � ~CCijjP
ij Cij

;

where C is the exact volume fraction field and ~CC is the numerical value obtained by a different combination

of reconstruction and advection algorithms. Results for different methods are presented in Table 1, where
the nst variable in the Stream scheme is set to 1000. The DDR scheme has the worst performance and does

not describe with sufficient accuracy the transverse fluxes near the cell corners. The SZ reconstruction

algorithm produces the best result because of the better approximation of the interface where the curvature

is high.

4.2. Reversed single vortex test

A more precise assessment of the reconstruction and advection algorithms is made with a flow con-

taining a non-uniform vorticity field [1,5,9,11]. A circle of radius 0.15 is centered at ð0:5; 0:75Þ in a unit

square domain. All boundaries are periodic and the velocity field v is specified by the stream function



0.34 0.4 0.5 0.6 0.66

0.6

0.7

0.8

0.9

Fig. 5. Zalesak slotted disk test. The slotted disk (continuous solid line) is shown together with three reconstructed interfaces after one

full rotation: ELVIRA/EI–LE (solid segments), ELVIRA/P (dashed segments) and SZ/EI–LE (dotted segments). The first two re-

constructed interfaces cannot be distinguished at this resolution.

Table 1

Errors for the Rudman–Zalesak slotted disk test

Reconstruction/Advection algorithms Error

Puckett/DDR 1.50e) 2

Puckett/Stream 1.00e) 2

ELVIRA/EI–LE 1.00e) 2

SZ/EI–LE 4.16e) 3

ELVIRA/P 1.00e) 2

The first two results are from [11,12], the second two from [5].
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Wðx; y; tÞ ¼ 1

p
sin2ðpxÞ sin2ðpyÞ cos pt

T

� �
: ð10Þ

The fluid stretches and spirals about the center of the domain, reaching a maximum deformation at time

t ¼ T =2, while at t ¼ T is back to the initial configuration [24]. The maximum CFL is equal to 1. We

consider a period T ¼ 2 and for consistency with previous work we now calculate the error as

E ¼
X
i;j

h2jCi;j � ~CCi;jj;

which has the dimension of an area. We alternate in time the coordinate direction of the implicit part of the

algorithm, both in the split and unsplit advections, which are coupled to the ELVIRA reconstruction

technique. The results are given in Table 2. For completeness, we mention that when we run this test on the

322 grid with the ELVIRA reconstruction and with two consecutive LE or EI steps we observe an in-

creasing in the reference phase area of about 6.4% with the explicit scheme and a decreasing of about 7.4%



Table 2

Errors and convergence rates for the single vortex test

Grid Error/(Order)

(a) (b) (c) (d) (e)

322 2.37e) 3/(2.07) 2.36e) 3/(2.01) 2.52e) 3/(1.95) 1.09e) 3/(1.96) 2.46e) 3/(2.01)

642 5.65e) 4/(2.10) 5.85e) 4/(2.16) 6.46e) 4/(2.15) 2.80e) 4/(2.19) 6.10e) 4/(2.19)

1282 1.32e) 4 1.31e) 4 1.45e) 4 5.72e) 5 1.34e) 4

(a) Puckett/Stream, (b) Puckett/RK, (c) ELVIRA/EI–LE, (d) SZ/EI–LE, (e) ELVIRA/P. The data in the first column are from [11],

those in the second one from [1], the following two columns are from [5].
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with the implicit one. The split version of the linear mapping algorithm is for this test slightly less per-

forming than unsplit one, because of the double number of reconstructions combined with the effects of the

1D compression or expansion which deforms appreciably the interface in the intermediate reconstruction.

However, a better reconstruction algorithm, such as SZ, has a stronger impact on the performance than the

change from split to unsplit advection. We believe that the difference in the results obtained by the linear

mapping and the Stream (here with nst ¼ 100) and RK unsplit schemes is mainly due to the reconstruction

algorithm, since the ELVIRA method is slightly less performing than the Puckett�s one when the radius of

curvature is not much bigger than the grid spacing. As a matter of fact, we notice that the P algorithm is
converging at a slightly faster rate.
5. Conclusion

We have presented a new advection algorithm in 2D Cartesian geometry. At each time step a linear

mapping is used to advect the reconstructed interface into neighboring cells. For a divergence-free velocity

field the Jacobian of the linear mapping is equal to one, thus it is an area-preserving mapping. The mapping
of the whole grid is piecewise linear, each piece transforming a rectangular element of the starting tessel-

lation of the plane onto the final one, while preserving the area. Thus, no holes or overlapping regions are

produced in the advection and the numerical values of the volume fraction C are always constrained be-

tween 0 and 1. It provides a simple multidimensional or unsplit method. The method could be applied with

higher-order reconstructions of the interface without fundamental changes, but a more complicated nu-

merical quadrature would be required to determine the mass falling in each cell after the advection.

It is also interesting to consider possible extension to other interface tracking methods. For instance, if

the interface is tracked by a level set, the level set function could be updated by /ðx; tnþ1Þ ¼ /ðP�1ðxÞ; tnÞ,
where P is an operator transforming a tessellation of the plane in an area conserving way.

One of the drawbacks of the current method is the fact that the global mapping composed by all the

individual linear mappings of the rectangles is discontinuous. Therefore, particles close to each other but in

different rectangles of the tessellation follow different paths. This makes the extension to markers methods

more difficult. It would be interesting to have continuous linear mappings. This could be achieved with

triangular tessellations of the plane, in which the linear mappings interpolate the velocities at the vertices of

the triangulations.
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